10.4 Work

 Draw a l 	before-and-after	diagram,	similar t	o Figures	10.8	and	10.11	in th	e textbool	ζ.
------------------------------	------------------	----------	-----------	-----------	------	-----	-------	-------	------------	----

•	Identify	all	forces	acting	on	the	particle.
---	----------	-----	--------	--------	----	-----	-----------

•	Determine if the work done by each of these forces is positive (+), negative (-), or zero (0)
	Make a little table beside the figure showing <i>every</i> force and the sign of its work.

• Determine if the work done by each of these forces is positive (+), negative (-), or zero (0 Make a little table beside the figure showing <i>every</i> force and the sign of its work.	1)
a. An elevator moves upward.	
b. An elevator moves downward.	
c. You push a box across a rough floor.	
Too pass a son was so a rough rison.	

d. You slide down a steep hill.

e. A ball is thrown straight up. Consider the ball from one microsecond after it leaves your hand until the highest point of its trajectory.

11. An object experiences a force while undergoing the displacement shown. Is the work done positive (+), negative (-), or zero (0)?

а

h

^

Sign = _____

d.

Sign = _____

Sign = _____

Sign = _____

f.

Sign = _____

12. Each of the diagrams below shows a displacement vector for an object. Draw and label a force vector that will do work on the object with the sign indicated.

a.

h

C

10.5 Kinetic Energy

14. Can kinetic energy ever be negative?

Give a plausible reason for your answer without making use of any formulas.

- 15. a. If a particle's speed increases by a factor of three, by what factor does its kinetic energy change?
 - b. Particle A has half the mass and eight times the kinetic energy of particle B. What is the speed ratio v_A/v_B ?
 - c. If a rotating skater triples her rate of rotation by decreasing her moment of inertia by 1/3, by what factor does her rotational kinetic energy change?
- 16. On the axes below, draw graphs of the kinetic energy of
 - a. A 1000 kg car that uniformly accelerates from 0 to 20 m/s in 20 s.
 - b. A 1000 kg car moving at 20 m/s that brakes to a halt with uniform deceleration in 4 s.
 - c. A 1000 kg car that drives once around a 40-m-diameter circle at a speed of 20 m/s.

Calculate *K* at several times, plot the points, and draw a smooth curve between them.

10.6 Potential Energy

17. Below we see a 1 kg object that is initially 1 m above the ground and rises to a height of 2 m. Anjay and Brittany each measure its position but use a different coordinate system to do so. Fill in the table to show the initial and final gravitational potential energies and ΔU as measured by Anjay and Brittany.

	U_{i}	$U_{ m f}$	ΔU
Anjay			
Brittany			

18. Three balls of equal mass are fired simultaneously with *equal* speeds from the same height above the ground. Ball 1 is fired straight up, ball 2 is fired straight down, and ball 3 is fired horizontally. Rank in order, from largest to smallest, their speeds v_1 , v_2 , and v_3 as they hit the ground.

t	Ball	1		
) —	-	Ball	3
ļ	Ball	2.		

Order:	
Explanation:	

19. Below are shown three frictionless tracks. A block is released from rest at the position shown on the left. To which point does the block make it on the right before reversing direction and sliding back? Point B is the same height as the starting position.

