$\qquad$

## Wonders of Wacky Waves

Important items to keep in mind: $\quad \mathrm{f}=1 / \mathrm{T} \quad \mathrm{v}=\mathrm{f} \lambda$

1. A person standing in the ocean notices that after a wave crest passes by, ten more crests pass in a time of 110 s . What is the frequency of the wave?

Ans.
2. To navigate, a porpoise emits a sound wave that has a wavelength of 2.5 cm . The speed at which sound travels in seawater is $1450 \mathrm{~m} / \mathrm{s}$. Find the period of the wave.

Ans.
3. Consider a freight train. Suppose 16 boxcars pass by in a time of 12.0 s and each has a length of 15.0 m . What is the frequency at which each boxcar passes? What is the speed of the train?

Ans.
Ans.
4. A light wave travels through air at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Red light has a wavelength of about 638 nm . What is the frequency of light?

Ans.
5. A hand moves the end of a Slinky ${ }^{\mathrm{TM}}$ up and down through two complete cycles in one second. The wave moves along the Slinky ${ }^{\mathrm{TM}}$ at a speed of $0.60 \mathrm{~m} / \mathrm{s}$. Find the distance between two adjacent crests on the wave.
6. A longitudinal wave with a frequency of 3.0 Hz takes 1.5 s to travel the length of a 2.0 m Slinky ${ }^{\text {TM }}$. Determine the wavelength of the wave.

Ans.
7. A wave has a frequency of 44 Hz and a speed of $28 \mathrm{~m} / \mathrm{s}$. Determine, if possible, its period, its wavelength, and its amplitude.

Ans.

Ans.
Ans.
8. A person lying on an air mattress in the ocean rises and falls through one complete cycle every 4.0 seconds. The crests of the wave causing the motion are 18.0 m apart. Determine the frequency and speed of the wave.

