4.3 A Short Catalog of Forces

4.4 Identifying Forces

Exercises 4–8: Follow the six-step procedure of Tactics Box 4.2 to identify and name all the forces acting on the object.

4.	An elevator suspended by a cable is descending at constant velocity.
5.	A compressed spring is pushing a block across a rough horizontal table.
6	A brick is falling from the roof of a three-story building.
7.	Blocks A and B are connected by a string passing over a pulley Block B is falling and dragging block A across a frictionless table. Let block A be "the system" for analysis.
8.	A rocket is launched at a 30° angle. Air resistance is not negligible.

4.5 What Do Forces Do?

9. The figure shows an acceleration-versus-force graph for an object of mass m. Data have been plotted as individual points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-versus-force graphs for objects of mass

a. 2m

b. 0.5m

Use triangles ▲ to show four points for the object of mass 2m, then draw a line through the points. Use squares \blacksquare for the object of mass 0.5m.

10. A constant force applied to an object causes the object to accelerate at 10 m/s². What will the acceleration of this object be if

b. The m

Acceleration

226	is	dont	oled?		
lass	12	uout	ncu:		

Force (rubber bands)

c. The force is doubled *and* the mass is doubled?

11. A constant force applied to an object causes the object to accelerate at 8 m/s². What will the acceleration of this object be if

a. The force is halved?

The	mass	is	halved?	W
	The	The mass	The mass is	The mass is halved?

c. The force is halved *and* the mass is halved?

d. The force is halved and the mass is doubled?	

12. The quantity y is inversely proportional to x and y = 4 when x = 9.

a. Write an equation to represent this inverse relationship for all y and x.

b. Find
$$y$$
 if $x = 12$

b. Find y if
$$x = 12$$
 _____ c. Find x if $y = 36$ _____

d. Compare your equation in part a to the equation from your text relating a and m, $a = \frac{F}{m}$.

Which quantity assumes the role of x?

Which quantity assumes the role of y?

What is the constant of proportionality relating a and m?