\qquad

1. At the same moment a ball is projected horizontally (level with the ground) another ball (identical to the first) is dropped from the same height. Which reaches the ground first? More importantly, why?
2. To a physicist, what is considered to be a projectile? In other words, how is the term projectile defined?
3. Consider a projectile "in flight." Using the words constant and changes, fill out the following chart indicating whether or not the specific aspect of the projectile's motion is constant or changes:

Aspect of the projectile's motion	Constant or Changes
x -horizontal position	
y -vertical position	
v_{x}-horizontal velocity	
v_{y}-vertical velocity	
a_{x}-horizontal acceleration	
a_{y}-vertical acceleration	

4. In the previous question you specified whether or not a projectile's horizontal and vertical acceleration changed during flight or was constant. Now you need to specify values (or ranges of values in the case of a changing acceleration) for each. Make sure to note which value is for horizontal and which is for vertical acceleration.
5. After reading a projectile motion problem you should make a sketch of the trajectory of the projectile. What is meant by the word trajectory?
6. On your trajectory sketch you are also supposed to label quantities that you know or you are asked to find. List a few of those quantities that should be labeled.
7. If you are given a launch speed, \boldsymbol{v}, and angle of launch, θ (with the horizontal), how would you calculate the initial horizontal and vertical velocities $\left(\boldsymbol{v}_{\boldsymbol{x}} \& \boldsymbol{v}_{\boldsymbol{y}}\right)$? You may simply write an equation for each.
8. A projectile is launched with a borizontal velocity of $16 \mathrm{~m} / \mathrm{s}$ and a vertical velocity of $12 \mathrm{~m} / \mathrm{s}$. What is the projectile's resultant (combined) velocity? Show all calculations.
9. A projectile is launched with a horizontal speed of $22 \mathrm{~m} / \mathrm{s}$. If the projectile was launched at an angle of 33 degrees above the horizontal, find the projectile's vertical speed. Show all calculations.
10. "A projectile is launched at angle of 35 degrees above the horizontal and at a speed of $24 \mathrm{~m} / \mathrm{s}$." Is the speed mentioned in the statement preceding this question a borizontal speed, resultant (combined) speed, or vertical speed? What words are present (or absent) in the sentence that lets you know which speed it is?

For these questions let $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ down. Employ the projectile puzzle solving techniques used in class to answer the following:
11. A cat leaps horizontally from the top of a couch 0.90 meters above the floor toward a toy on the floor 1.50 meters away. With what speed must the cat leap to land directly on the toy?

$$
v_{a v e}=
$$

12. A certain type of longbow fires arrows horizontally out a castle tower's arrow slit at $25 \mathrm{~m} / \mathrm{s}$. If the arrow is found embedded in the ground a mere 30.0 meters away from the base of the tower, from what height was the arrow launched?
13. A famous German football player kicks a soccer ball off the roof of a 30.0 m tall building for an Adidas commercial. If the launch velocity of the ball is $39 \mathrm{~m} / \mathrm{s}$ at 42.0° above the horizontal, at what distance from the base of the building does the ball land?

$$
\Delta x=
$$

14. Casey clubs a golf ball at speed of $45.7 \mathrm{~m} / \mathrm{s}$ at an angle of 35.0° above the ground. Calculate the maximum height the ball obtains.

$$
\Delta y=
$$

Find the total time the ball is in the air.

$$
\mathrm{t}=
$$

Calculate the horizontal range of the ball.

$$
\Delta \mathrm{x}=
$$

