Name: \qquad Block: \qquad Date: \qquad
Let $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$. Solve these questions using concepts of Work and Energy. Show your initial equations so that it's clear what approach you took.

1. A bird is flying with a speed of $18.0 \mathrm{~m} / \mathrm{s}$ over water when it accidentally drops a 2.00 kg fish. If the altitude of the bird is 5.40 m and drag is disregarded, what is the speed of the fish when it hits the water?

Ans:
2. A 755 N diver drops from a board 10.0 m above the water's surface. Find the diver's speed 5.00 m above the water's surface. Then find the diver's speed just before striking the water.

Ans:
Ans:
3. If the diver in item 2 leaves the board with an initial upward speed of $3.00 \mathrm{~m} / \mathrm{s}$, find the diver's speed when striking the water.

Ans:
4. A pendulum bob is released from some initial height such that the speed of the bob at the bottom of the swing is $1.9 \mathrm{~m} / \mathrm{s}$. What is the initial height of the bob?

Ans:
5. How long does it take a 19 kW steam engine to do $6.8 \times 10^{7} \mathrm{~J}$ of work?

Ans:
6. A $1.50 \times 10^{3} \mathrm{~kg}$ car accelerates uniformly from rest to $10.0 \mathrm{~m} / \mathrm{s}$ in 3.00 s . What is the work done on the car in this time interval? What is the power delivered by the engine in this time interval?

Energetic Events

7. A 50.0 kg diver steps off a diving board and drops straight down into the water. The water provides a drag force of 1500 N to the diver. If the diver comes to rest 5.0 m below the water's surface, what is the total distance between the diving board and the diver's stopping point underwater?

Ans:
8. A 0.60 kg rubber ball has a speed of $2.0 \mathrm{~m} / \mathrm{s}$ at point A and kinetic energy of 7.5 J at point B . Determine the ball's kinetic energy at A, the ball's speed at B, and the work done on the ball as it moves from A to B.

Ans:

Ans:
Ans:
9. A 70.0 kg base runner begins her slide into second base while moving at a speed of $4.0 \mathrm{~m} / \mathrm{s}$. The coefficient of friction between her clothes and Earth is 0.70 . She slides so that her speed is zero just as she reaches the base. How far does she slide?

Ans:
10. The speed of a hockey puck decreases from 45.00 to $44.67 \mathrm{~m} / \mathrm{s}$ in coasting 16 m across the ice. Find the coefficient of kinetic friction between the puck and the ice.

Ans:
11. A particle, starting from point A in the drawing, is projected down the curved runway. Upon leaving the runway at point B, the particle is traveling straight upward and reaches a height of 4.00 m above the floor before falling back down. Ignoring friction and air resistance, find the speed of the particle at point A.

