Electricity & Magnetism (E&M)

HS-PS2-5, 3-5:

HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. [Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.]

Learning Targets:

I CAN...

- LT1 Identify the symbol and units of measurement for electric current, voltage, resistance, and power.
- LT2 Use Ohm's Law to calculate current, voltage, and resistance.
- LT3 Calculate electric power based on two of the three quantities listed above.
- LT4 Calculate the cost of electric energy given the power of a device and the cost of the energy in kW*hr.
- LT5 Recognize and explain what causes magnetic fields.
- LT6 Identify the shape and direction of the magnetic field around a bar magnet.
- LT7 Distinguish between magnetic fields and electric fields.
- LT8 Describe the relationship between magnetic and electric fields, i.e., electromagnetic induction.

LT1 examples:

The abbreviation for current is	The abbreviation for voltage is
The abbreviation for resistance is	The abbreviation for power is
The SI Unit for current is	The SI Unit for voltage is
The SI Unit for resistance is	The SI Unit for power is

LT2 examples:

A. If a light bulb draws 0.125 Amps from a household line of 120 Volts, what's the effective resistance of the bulb?

B. If a toaster has a resistance of 30.0 Ohms, how much current does it draw when connected to 120 Volts?

C. What voltage is needed to create a current of 3.0 mA in a resistance of 1500 Ohms?

LT3 examples:

D. If a light bulb draws 0.50 A at 120 V, what's the power rating of the bulb?

F. If a 75 Watt light bulb is connected to 120 V, calculate the <u>current</u> in and <u>resistance</u> of the bulb.

G. A 1.5 W indicator light is connected to a circuit. If the resistance of the bulb is 150 Ohms, what is the current in the bulb?

LT4 examples:

H. The cost of electrical energy in a particular community is \$0.08 / kW*hr. How much does it cost to leave a 15 Watt security light on every day? How about for a year?

I. The cost of electrical energy is a particular community is \$0.12 / kW*hr. How much does it cost to watch a large screen television 2.00 hours a day for an entire year, if the TV, sound system, and DVR it's connected to convert energy at a rate of 275 Watts?

LT5 examples:

A. A student has a 9 Volt battery, a length of wire and an iron nail. How can she use those materials to create a magnetic field?

B. A student asks you for help on a question...he says "What *is* the cause of magnetic fields?" What is your accurate response?

C. What metals are easily magnetize-able?

LT6 examples:

D. A bar magnet has two poles, a north seeking pole and a south seeking pole. Why do we call them "north seeking" and "south seeking" poles rather than simply "positive" and "negative?"

E. Draw a bar magnet, label the ends with a polarity, and draw the shape of the magnetic field around the bar magnet. Indicate the direction of the magnetic field with some arrows.

LT7 examples:

F. What do north magnetic poles do to other north magnetic poles?

G. If you want to create a large magnetic field with an electric charge, what do you have to do to the electric charge?

LT8 examples:

- H. What is electromagnetic induction (EMI)?
- I. How does EMI relate to radio waves or visible light?
- I. Name at least four technological items that rely on EMI to function.