Coulomb's Law	Name:		Block:	_ Date:
Coulomb's Law can be states in equation form as $F_e = \frac{k q_1 q_2 }{r^2}$				
This equation can be used as an <i>algebraic recipe</i> for solving computational problems or as a <i>guide to thinking</i> about how an alteration in the quantity of charge or the distance between charged objects effects the amount of attractive or repulsive force.				
Using Coulomb's Law as a "Guide to Thinking" Alteration in the Quantity of Charge				
1. Two charg		pulsive force of .080 N.	If the charge of on	e of the objects is doubled,
2. Two charg then what is the new		oulsive force of .080 N.	If the charge of bo	th of the objects is doubled,
Alteration in the Distance 3. Two charges then what is the new	ged objects have a rep		If the distance sepa	arating the objects is doubled,
4. Two charg		pulsive force of .080 N.	If the distance sepa	arating the objects is tripled,
5. Two charg quadrupled, then wha		ttractive force of .080 N	I. If the distance se	parating the objects is
6. Two charg then what is the new	, ,	oulsive force of .080 N.	If the distance sepa	nrating the objects is halved,
Alteration in both the Quantity of Charge and the Distance				
		oulsive force of .080 N. led, then what is the ne		e of the objects is doubled, and
		oulsive force of .080 N. led, then what is the ne	_	th of the objects is doubled and
	, ,	ttractive force of .080 N ating the objects is doub	0	one of the objects is increased ne new force?
		attractive force of .080 l		one of the objects is tripled and

Using Coulomb's Law as an "Algebraic Recipe"

PSYW

11. A balloon with a charge of 4.0×10^{-5} C is held a distance of 0.10 m from a second balloon having the same charge. Calculate the magnitude of the repulsive force. PSYW 12. Calculate the electrical force (in Newtons) exerted between a 22-gram balloon with a charge of -2.6 µC and a wool sweater with a charge of $+3.8 \mu C$; the separation distance is 0.75 m. **PSYW** 13. Suppose that two equally charged spheres attract each other with a force of 0.492 N when placed a distance of 29.1 cm from each other. Determine the charge of the spheres. **PSYW** 14. A +5.0 μC charge and a -6.0 μC charge experience an attractive force of 0.72 N. Determine their separation distance. PSYW 15. A balloon has been rubbed with wool to give it a charge of -1.0×10^{-6} C. A plastic tube with a charge of $+4.0 \times 10^{-6}$ C is held a distance of 0.50 m above the balloon. Determine the electrical force of attraction between the tube and the balloon. PSYW In the space at the right, construct a free-body diagram showing the direction and the type of all forces acting upon the 30.0-gram balloon. Will the balloon accelerate up, down, or not at all? ______ If there is an acceleration, then calculate its value. (Assume that the plastic tube is held a constant distance of 0.5 m from the balloon.)